

Train self-organisation for traffic management decisions

Vito Trianni Institute of Cognitive Sciences and Technologies, CNR, Italy vito.trianni@istc.cnr.it

SORTEDMOBILITY Final Event Paris, May the 13th, 2024

ERA-NET Cofund Urban Accessibility and Connectivity

ERA-NET Cofund Urban Accessibility and Connectivity

D'Amato L., Naldini F., Tibaldo V., Trianni, V. and Pellegrini P. Designing self-organizing railway traffic management. Journal of Rail Transport Planning & Management (to appear)

- Two trains interact if they may use the same track within a given time horizon Consider all trains that will be in the area within the time horizon

 - Consider all possible routes of these trains, limited to the time horizon
 - Check for trains that may pass through the same track
- Choosing the best time horizon is crucial

- Two trains interact if they may use the same track within a given time horizon Consider all trains that will be in the area within the time horizon

 - Consider all possible routes of these trains, limited to the time horizon
 - Check for trains that may pass through the same track

Choosing the best time horizon is crucial

- Two trains interact if they may use the same track within a given time horizon Consider all trains that will be in the area within the time horizon

 - Consider all possible routes of these trains, limited to the time horizon
 - Check for trains that may pass through the same track

Choosing the best time horizon is crucial

- Two trains interact if they may use the same track within a given time horizon Consider all trains that will be in the area within the time horizon

 - Consider all possible routes of these trains, limited to the time horizon
 - Check for trains that may pass through the same track

Choosing the best time horizon is crucial

- Two trains interact if they may use the same track within a given time horizon Consider all trains that will be in the area within the time horizon

 - Consider all possible routes of these trains, limited to the time horizon
 - Check for trains that may pass through the same track

Choosing the best time horizon is crucial

- Two trains interact if they may use the same track within a given time horizon Consider all trains that will be in the area within the time horizon Consider all possible routes of these trains, limited to the time horizon Interaction Graph

 - Check for trains that may pass through the same track

Choosing the best time horizon is crucial

Neighbourhood Selection Effects of varying time horizon

time

horizon

Neighbourhood Selection Effects of varying time horizon

Neighbourhood Selection Effects of varying time horizon

- Each train independently solves a local traffic management problem exploiting a custom version of RECIFE-MILP

 - Passenger demand is considered at this stage
 - Only trains belonging to the neighbourhood are optimised

The focal train may weight differently from other trains in the objective function

- One or more different solution hypotheses are produced \bullet Retain only solutions within a certain margin from the optimal one ulletRetain only a maximum number of solutions •
- Individual hypotheses can be shared within a neighbourhood

- One or more different solution hypotheses are produced Retain only solutions within a certain margin from the optimal one ullet• Retain only a maximum number of solutions
- Individual hypotheses can be shared within a neighbourhood

- One or more different solution hypotheses are produced Retain only solutions within a certain margin from the optimal one ullet• Retain only a maximum number of solutions
- Individual hypotheses can be shared within a neighbourhood

- One or more different solution hypotheses are produced Retain only solutions within a certain margin from the optimal one • Retain only a maximum number of solutions
- Individual hypotheses can be shared within a neighbourhood

Hypothesis Compatibility can different get merged without conflicts?

- Pairwise evaluation of hypothesis of different trains
- Compatibility strength: how strict is the evaluation? **Strong compatibility:** require that all trains have compatible paths Weak compatibility: require that focal trains have compatible paths

- Compatibility outcome: how to create the hypothesis graph? **Binary compatibility:** graph edges exists or not
- - **Continuous compatibility:** weighted edges in the graph
- Current solution: weak and binary

ERA-NET Cofund Urban Accessibility and Connectivity

Hypothesis Compatibility can different get merged without conflicts?

- Pairwise evaluation of hypothesis of different trains
- Compatibility strength: how strict is the evaluation? **Strong compatibility:** require that all trains have compatible paths Weak compatibility: require that focal trains have compatible paths
- Compatibility outcome: how to create the hypothesis graph? **Binary compatibility:** graph edges exists or not
- - **Continuous compatibility:** weighted edges in the graph
- Current solution: weak and binary

ERA-NET Cofund Urban Accessibility and Connectivity

Consensus how to select the best set of hypotheses?

- Given knowledge about hypothesis compatibility, find a global solution
 - each train selects an hypothesis compatible with the one of the neighbours
 - each train selects an hypothesis to optimise the objective function
- A solution is a subgraph of the hypothesis graph
- SORTEDMOBILITY: Decentralised consensus process based on voter models

Consensus how to select the best set of hypotheses?

- Given knowledge about hypothesis compatibility, find a global solution
 - each train selects an hypothesis compatible with the one of the neighbours
 - each train selects an hypothesis to optimise the objective function
- A solution is a subgraph of the hypothesis graph
- SORTEDMOBILITY: Decentralised consensus process based on voter models

Consensus how to select the best set of hypotheses?

- Given knowledge about hypothesis compatibility, find a global solution
 - each train selects an hypothesis compatible with the one of the neighbours
 - each train selects an hypothesis to optimise the objective function
- A solution is a subgraph of the hypothesis graph
- SORTEDMOBILITY: Decentralised consensus process based on voter models

Consensus iterative stochastic decentralised algorithm

- Train *t* selects hypothesis $h_t \in H_t$ at start, select its best hypothesis h_{r}^{*}
- Train t selects a subset \mathcal{N}'_t of k neighbours $(|\mathcal{N}'| = k)$
- Train t ranks its hypotheses in H_t for compatibility with N'
- If h_t is a top-ranked hypothesis, keep it
- Otherwise, chose a top-ranked hypothesis proportionally to its utility $u(h_t)$

ERA-NET Cofund Urban Accessibility and Connectivity

- We test three different implementations
 - k = 1: only choose a single neighbour at a time
 - $k = \infty$: always choose all neighbours
 - k adaptive: start with ∞ and slowly decrease to 1
- Convergence when a global solution is found (absorbing state)
- Goals:
 - Select the best global solution
 - Minimise the time to convergence 2.

ERA-NET Cofund Urban Accessibility and Connectivity

		-					-				-	-	-			-	-		-	-			-	-
								-			-													
								•																
											-													
	Г												Г											
								-	-															
-	-	-	-	-				-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
	 					 		•	•	•														
	 							•		•	•													
	 	· · ·						•		-	•	· · ·	· · ·		•					· · ·				
	 -	· · ·			-			-	-	-	•		· · ·	-			-	•	· · ·	- -	-			
	 	- -	- -		-			-	-	-	•	-	· · ·	-	-		-	- - -	· · ·	- - -	-			-

							÷.																
					÷	÷	h.			÷					÷	÷	1				÷		÷
							÷.																
							÷.																
							÷.																
							÷.																
							÷																
							i.																
1	1	1	1	1	1	1	ĩ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
							÷.																
							÷.																
							έ.																
							ь.																
		*	•	•	•		ē.		-	1		-	*	•	•	1				•	•	-	
							÷																
							÷																

10⁵

Merge how to generate a global RTTP

- After consensus, each train proposes an hypothesis (RTTP)
- All hypotheses are merged to create a new, well-formed, RTTP
- The merge process is centralised at the train control center
 - The path of each train t is extracted from the selected hypothesis h_t
 - All previous paths are replaced by the new one into the RTTP
 - If consensus is not achieved (or partially achieved), the previous paths remain valid
- In the unlikely case that the merge process produces incompatibilities in the long term, these are repaired centrally

ERA-NET Cofund Urban Accessibility and Connectivity

Thanks for your attention!

This project is supported by the European Commission and funded under the Horizon 2020 ERA-NET Cofund scheme under grant agreement N° 875022

ERA-NET Cofund Urban Accessibility and Connectivity

