

Final event

May 13th 2024

Agenda - morning

- 10:00 Introduction
- 10:10 Crash course:

Machine learning for planning and decision making

11:10

11:30 - Crash course:

Collective intelligence for decision support

Paving the way to self-organizing traffic management

12:30

Agenda - afternoon

13:50 - Train self-organization for traffic management decisions
14:10 - Dynamic demand requirements for traffic management
14:30 - Evaluation of self-organizing traffic management
Joint simulation of rail passenger and operations
Analysis of different case studies
Industrial interpretation

15:10 - Recommendations

17:00 - Conclusions

Paving the way to self-organizing traffic management

Self-Organized Rail Traffic for the Evolution of Decentralized MOBILITY

European project H2020 ERA*-NETCofund

Period : June 2021 - May 2024

Budget: 1841776 €

* European Research Area

Concept

Self-organization may have several benefits:

- improved system reactivity
- preservation of private information
- possibility to make RU-proper decisions

د

Self-organizing principles for everyday operations,

X

- traffic perturbations
- disruptions

Traffic management works in a fully automatic way

The definition of the $\ensuremath{\text{overall TMS process}}$ is out of the scope of SORTEDMOBOLITY

Implementation

- Trains seek consensus
- Possible decisions:
 - retiming
 - 2 reordering
 - Iocal rerouting
 - use alternative platforms or itineraries at stations
 - use of alternative tracks
 - use of track portions typically used for the opposite direction but equipped for both
 - Preserve passenger transfers
- If no consensus, the last accepted plan is kept
 - the one decided at a previous iteration
 - the original timetable routes and orders

Evaluation via microscopic simulation

traffic modeling

demand modeling

Evaluation via microscopic simulation

traffic modeling

demand modeling

ERA-NET Cofund Urban Accessibility and Connectivity

URBAN EUROPE

Decision format: Real Time Traffic Plan

The RTTP describes microscopically how the traffic shall be executed:

- Train view: which routes will the trains take
- Infrastructure view: in which order will trains pass over sections

Decision format: Real Time Traffic Plan

The RTTP describes microscopically how the traffic shall be executed:

- Train view: which routes will the trains take
- Infrastructure view: in which order will trains pass over sections

Assessment

- Benchmark with centralized management
- Case studies in **France**, **Italy and Denmark** ⇒ Recommendations

Consortium

Advisory board

BTH – Blekinge Institute of Technology

DB Netze

ETH Zürich

Infrastruturas de Portugal

Network Rail

Università degli Studi di Napoli Federico II

University of Cambridge

URBAN EUROPE

Thank you!

For later questions and comments paola.pellegrini@univ-eiffel.fr

This project is supported by the European Commission and funded under the Horizon 2020 ERA-NET Cofund scheme under grant agreement N° 875022

